The Gilbertson Group
  • Home
  • People
  • Research
  • Courses/Teaching
  • Science and Engineering Outreach
  • Conferences & Workshops
  • Group News
  • Contact
  • Lab Resources
  • What We're Reading
  • Publications

Sustainability by Design

     Novel materials have immense potential to significantly improve the functional performance of current and future technologies. Sustainability by design is a framework that aims to ensure that emerging materials are able to met (or even exceed!) desired performance metrics while also being safe to humans and the environment. This approach precludes the potential realization of adverse unintended consequences. The framework is established on the premise that material structure and physicochemical properties serve as a design handle to manipulate and tailor the desirable and undesirable outcomes. Structure-property-function (SPF) and structure-property-hazard (SPH) relationships are determined by establishing robust relationships between specific materials structure-property parameters and the desired function and inherent hazard. 

Establishing Parametric Relationships 

The development of robust SPF and SPH parametric relationships requires (1) systematic modification of the material structure, physical and chemical properties followed by (2) comprehensive characterization of those properties, including the desired function and hazard response profiles, and (3) identification of statistically significant correlations between the data collected. This research thrust involves development of controlled treatment methodologies, utilization of numerous techniques to fully characterize all aspects of the material, and application of multivariate statistical analysis to establish robust relationships to inform future sustainable material design .

Support for this research

Picture
CBET No. 1709031
Picture
Picture
U.Pitt Central Research Development Fund (CRDF)
Picture
Our seminal work in this area, Designing Nanomaterials to Maximize Performance and Minimize Implications Guided by the Principles of Green Chemistry was featured on the cover of Chemical Society Reviews, Chemical Society Review, 2015, 44, 5758-5777. DOI: 10.1039/c4cs00445k

Other relevant publications

Picture
Aquino de Carvalho, N.; Wang, Y.; Morales-Soto, N.; Waldeck, D.; Bibby, K.; Doudrick, K; Gilbertson, L. M.* “Using Carbon-Doping to Identify Photocatalytic Properties of Graphitic Carbon Nitride that Govern Antibacterial Efficacy.” Environmental Science and Technology: Water, 2021, 1(2), 269-280.

Barrios, A. C.; Cahue, Y. P.; Wang, Y.; Geiger. J. K.; Rodrigo C.; Puerari, R. C.; Matias, W. G.; Melegari, S. P.; Gilbertson, L. M.; Perreault, F. “A multispecies analysis of the relationship between oxygen content and toxicity in graphene oxide.” Environmental Science: Nano, 2021, 8, 1543-1559

Cruces, E.; Barrios, A. C.; Cahue, Y. P.; Januszewski, B.; Gilbertson, L. M.; Perreault, F. Similar toxicity mechanisms between graphene oxide and oxidized multi-walled carbon nanotubes in Microcystis aeruginosa, Chemosphere, 2021, 265, 1291237.
Picture
​Wang, Y.; Aquino de Carvalho, N.; Tan, S.; Gilbertson, L. M. “Leveraging Electrochemistry to Uncover the Role of Nitrogen in the Biological Reactivity of Nitrogen-Doped Graphene.” Environmental Science: Nano, 2019, DOI: 10.1039/C9EN00802K Cover Feature, Hot Article

Barrios, A. C.; Wang, Y.; Gilbertson, L. M.; Perreault, F. “Structure-property-toxicity relationships of graphene oxide: role of surface chemistry on the mechanisms of interactions with bacteria.” Environmental Science and Technology, 2019, 53(24), 14679-14687.

Falinski, M. M.; Plata, D. L.; Chopra, S. S.; Theis, T. L.; Gilbertson, L. M.; Zimmerman, J. B. “Navigating nanomaterial space for performance, hazard, and cost: Approaching more responsible nanomaterial selection and design.” Nature Nanotechnology, 2018, 13, 708-714​DOI:10.1038/s41565-018-0120-4

Wang, Y. and Gilbertson, L. M. "Informing rational design of graphene oxide through surface chemistry manipulations: properties governing electrochemical and biological activities." Green Chemistry, 2017, 19, 2826-2838. DOI: 10.1039/C7GC00159B
​
​
Gilbertson, L. M.; Melnikov, F.; Wehmas, L.; Anastas, P. T.; Tanguay R.; Zimmerman, J. B. “Toward Safer Multi-Walled Carbon Nanotube Design: Establishing a Statistical Model that Relates Surface Charge and Embryonic Zebrafish Mortality.” Nanotoxicology, 2016, 10(1), 10-19. DOI:10.3109/17435390.2014.996193 
​
Gilbertson, L. M.; Goodwin, D. G.; Taylor, A. D.; Pfefferle, L. D.; Zimmerman, J. B. “Towards Tailored Functional Design of Multi-Walled Carbon Nanotubes (MWNTs): Electrochemical and Antimicrobial Activity Enhancement via Oxidation and Selective Reduction.” Environmental Science and Technology, 2014, 48 (10), 5938-5945. DOI: 10.1021/es500468y

​Pasquini [Gilbertson], L. M.; Sekol, R. C.; Taylor, A. D.; Pfefferle, L. D.; Zimmerman, J. B. “Realizing Comparable Oxidative and Cytotoxic Potential of Single- and Multiwalled Carbon Nanotubes through Annealing”. Environmental Science and Technology, 2013, 47 (15), 8775-8783. DOI: 10.1021/es401786s

Pasquini [Gilbertson], L. M.; Hashmi, S. M.; Sommer, T. J.; Elimelech, M.; Zimmerman, J. B. “Impact of Surface Functionalization on Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes”. Environmental Science and Technology, 2012, 46 (11), 6297-6305. DOI: ​10.1021/es300514s

Home
About
Contact
Copyright ©  2022 Dr. Leanne M Gilbertson


The content included on this website was created by Dr. Leanne M Gilbertson. To request use of the content, please contact Dr. Gilbertson.